You and Your Research - Richard Hamming
I read the transcript of You and Your Research, a talk given by Dr. Richard W. Hamming. He pointed out the important of having a strong drive and why one should work on the most important problems of their field.
On Drive
“Now for the matter of drive. You observe that most great scientists have tremendous drive. I worked for ten years with John Tukey at Bell Labs. He had tremendous drive. One day about three or four years after I joined, I discovered that John Tukey was slightly younger than I was. John was a genius and I clearly was not. Well I went storming into Bode’s office and said, “How can anybody my age know as much as John Tukey does?”” He leaned back in his chair, put his hands behind his head, grinned slightly, and said, “You would be surprised Hamming, how much you would know if you worked as hard as he did that many years.”” I simply slunk out of the office!
What Bode was saying was this: “Knowledge and productivity are like compound interest.”” Given two people of approximately the same ability and one person who works ten percent more than the other, the latter will more than twice outproduce the former. The more you know, the more you learn; the more you learn, the more you can do; the more you can do, the more the opportunity - it is very much like compound interest. I don’t want to give you a rate, but it is a very high rate. Given two people with exactly the same ability, the one person who manages day in and day out to get in one more hour of thinking will be tremendously more productive over a lifetime. I took Bode’s remark to heart; I spent a good deal more of my time for some years trying to work a bit harder and I found, in fact, I could get more work done. I don’t like to say it in front of my wife, but I did sort of neglect her sometimes; I needed to study. You have to neglect things if you intend to get what you want done. There’s no question about this.”
On working on important problems
“Over on the other side of the dining hall was a chemistry table. I had worked with one of the fellows, Dave McCall; furthermore he was courting our secretary at the time. I went over and said, “Do you mind if I join you?” They can’t say no, so I started eating with them for a while. And I started asking, “What are the important problems of your field?’” And after a week or so, “What important problems are you working on?” And after some more time I came in one day and said, “If what you are doing is not important, and if you don’t think it is going to lead to something important, why are you at Bell Labs working on it?” I wasn’t welcomed after that; I had to find somebody else to eat with! That was in the spring.
In the fall, Dave McCall stopped me in the hall and said, “Hamming, that remark of yours got underneath my skin. I thought about it all summer, i.e. what were the important problems in my field. I haven’t changed my research,” he says, “but I think it was well worthwhile.” And I said,”Thank you Dave,” and went on. I noticed a couple of months later he was made the head of the department. I noticed the other day he was a Member of the National Academy of Engineering. I noticed he has succeeded. I have never heard the names of any of the other fellows at that table mentioned in science and scientific circles. They were unable to ask themselves, “What are the important problems in my field?’”
If you do not work on an important problem, it’s unlikely you’ll do important work. It’s perfectly obvious. Great scientists have thought through, in a careful way, a number of important problems in their field, and they keep an eye on wondering how to attack them. Let me warn you, ‘important problem’ must be phrased carefully. The three outstanding problems in physics, in a certain sense, were never worked on while I was at Bell Labs. By important I mean guaranteed a Nobel Prize and any sum of money you want to mention. We didn’t work on (1) time travel, (2) teleportation, and (3) antigravity. They are not important problems because we do not have an attack. It’s not the consequence that makes a problem important, it is that you have a reasonable attack. That is what makes a problem important. When I say that most scientists don’t work on important problems, I mean it in that sense. The average scientist, so far as I can make out, spends almost all his time working on problems which he believes will not be important and he also doesn’t believe that they will lead to important problems.
I spoke earlier about planting acorns so that oaks will grow. You can’t always know exactly where to be, but you can keep active in places where something might happen. And even if you believe that great science is a matter of luck, you can stand on a mountain top where lightning strikes; you don’t have to hide in the valley where you’re safe. But the average scientist does routine safe work almost all the time and so he (or she) doesn’t produce much. It’s that simple. If you want to do great work, you clearly must work on important problems, and you should have an idea.”
Read the entire transcript. It is worth it.